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Abstract. The renormalization group equations of Ma for the n-vector model in the limit of 
large n are solved exactly. The solutions are given in terms of the non-linear scaling fields of 
Wegner, both in the trivial fixed-point representation and the non-trivial fixed-point 
representation. The effective exponent for the susceptibility crossover is computed and it is 
shown that the semi-microscopic theory of Riedel and Wegner is contained in the present 
theory as a lowest-order approximation in the most relevant scaling field. 

1. Introduction 

Recently considerable attention has been devoted to the study of non-linear solutions 
of renormalization group (RG) equatiqns. It is well known that in the RG approach 
(Wilson and Kogut 1974) critical behaviour is obtained by linearizing RG equations 
around a fixed point. However, if one wishes to analyse more complex phenomena, 
such as crossover (Fisher 1974) between distinct critical behaviours, then one needs to 
take into account the non-linear contributions. In the RG language crossover is 
described in terms of fixed points of competing stability. Crossover occurs as the 
non-linear terms in the RG equations drive the system from the neighbourhood of the 
less stable fixed point towards the neighbourhood of the more stable fixed point. This 
mechanism has been clearly illustrated in the work of Riedel and Wegner (1974). In 
their paper the RG equations are modelled in order to reproduce the essential features 
of crossover with no reference to a microscopic analysis. Within the field theoretic RG 
approach in the ~-45~ theory, the Riedel and Wegner (RW) model can be obtained (Di 
Castro 1975) near the critical surface as the simplest approximation to leading order in 
E = 4 - d (where d is the space dimensionality) and in the coupling. 

Higher-order corrections were recently considered by Bruce and Wallace (1976). 
Their effective exponent for the susceptibility differs slightly from the one computed 
with RW equations. The same problem of Gaussian-critical crossover behaviour 
between the primary trivial fixed point and the secondary non-trivial Wilson-Fisher 
fixed point has been approached by Lawrie (1976) using a dimensional regularization 
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procedure. Parquet diagrams and skeleton expansion have been used to study cross- 
over from critical to classical behaviour by Natterman and Trimper (1974) and de 
Pasquale and Tombesi (1977) respectively. Nelson (1975) pointed out the connection 
of RW model with the RG recursion relations for the Landau-Wilson model. Global 
solutions of differential recursion relations (Wegner and Houghton 1973) within the 
framework of the E expansion were first given by Nicoll et a1 (1975). Their solutions are 
built to behave properly at the infinite Gaussian fixed point besides the finite Gaussian 
and the non-trivial fixed point giving rise to rather complex implicit expressions. 

Rudnick and Nelson (1976) instead limited their region of integration along RG flow 
lines up to a value of order one for the coherence.distance of the block spin system. In 
this way quantities near criticality are related to their non-critical expressions which can 
be simply evaluated, Moreover the renormalized coupling remains small over the 
entire region of integration. 

When several fixed points are considered simultaneously, special care has in fact to 
be devoted to maintain the solutions within the region of validity of the approximations 
used in deriving the equations, as for instance, in the E expansion. In this case, 
therefore, it is also especially important to test general ideas whenever possible with 
exactly solvable models. Global solutions of RG equations were for instance considered 
by Nelson and Fisher (1975) in various one-dimensional Ising spin systems to illustrate 
several features of the general theory such as the non-uniqueness of both non-linear 
scaling field and the RG transformation. 

The large-n limit (n being the number of components of the field) of the Landau- 
Wilson model is an important example for which one can produce exact solutions, which 
are relevant for the discussion of general features of crossover phenomena. 

The aim of this paper, therefore, is to give global solutions of RG equations with an 
application to the study of crossover from the point of view of the l /n expansion. We 
will be concerned with the spherical model limit (n + 00). The RG equations in this limit 
have been derived by Ma (1973). In our opinion this model is also an excellent tool for 
understanding the working of RG techniques in general. The fixed-point structure and 
the corresponding spectra of critical operators in the range of dimensionality 3 < d < 4 
are sufficiently complex to encompass non-trivial situations, while leaving the formal- 
ism manageable beyond the linear approximation. 

In § 2 we present the model, and set up the formalism. The RG recursion relations of 
Ma (1973) and the related linear problem are considered. 

In § 3 we introduce a set of non-linear scaling fields for both the non-trivial fixed 
point associated with spherical critical behaviour as originally discussed by Ma (1974a) 
and the trivial fixed point associated with Gaussian critical behaviour. This is per- 
formed by means of appropriate generating functions. The switch from one fixed point 
to the other is accomplished by a Legendre transformation. 

In § 4 the non-linear scaling fields are used to derive the exact equations for the 
renormalization trajectories. The parameter space is of infinite dimensionality. The 
most prominent feature of the global solutions, i.e. the fixed points, the critical surface 
and the separatrices, which determine the behaviour of the RG trajectories, are 
discussed without making any approximation. To give explicit plots of these trajec- 
tories for 3 S d < 4 we retain only the most relevant scaling fields. The Riedel and 
Wegner model emerges as the lowest-order approximation in the most relevant linear 
scaling field, i.e. near the critical surface. Out of the critical surface, global solutions 
deviate from the RW results. We then apply the inversion method of Riedel and Wegner 
to study the susceptibility crossover. 
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2. Fixed-point representations 

We consider a system in d dimensions with an n-component order parameter described 
by the reduced Hamiltonian 

where 
n 

4’=f 4;. 
i = l  

( ~ 4 ) ~  = j  f (V4i)’ 
i = l  

U(q52) is an O(n) invariant interaction of arbitrary order 

with 
In momentum space there is a natural cut-off A associated with the size of the coarse 

graining. In this paper we consider RG transformations generated by integration over 
the fraction of degrees of freedom with momenta in the range ( A / s ,  A), where the group 
parameter s varies continuously from 1 to 00. This yields an s-dependent effective 
Hamiltonian of the form 

= O(n I - ” )  in order to ensure the existence of the limit n +CO. 

H’[4’]  = I ddx[(V4)’+ U’(4’)]. 

In the limit n + 00 the exact recursion relation is conveniently expressed in terms of 

t(4’)=dU/d4’ (2.2) 

(2.3) t’(42)=S2f(p+S i$ ) 

which up to a constant contains the same information as U(4’). This reads (Ma 1973) 
2-d 2 

with 
A k d - 1  n 

’ 2 K d  /A/, dk k2+t’ /s2 

I W /  2). _ ,  1-dT-d/2 d-2  
The fixed point solution of equation (2.3) must satisfy the functional relation 

t*(q5’) = s2t*(p* +s2-dq52). (2.5) 
The critical behaviour associated with the trivial fixed point (TFP) f:(4’)=0 is of 
Gaussian type. 

Ma (1973) has shown that for d < 4  there is also a non-trivial fixed point (SFP) 
t,*(i$’)< M which is associated with the critical behaviour of the spherical model. The 
function tc*(q52) will be defined in the following. 

Both the previous fixed points lie on the critical surface. This is defined by the 
constraint on the interaction: t (Nc)  = 0, where N, = tn&Ad-2/(d - 2 ) .  Out of the 
critical surface for large s the solution approaches the Gaussian infinite fixed point. 

Once the fixed points have been located, the usual RG analysis proceeds by splitting 
the interaction into a fixed-point contribution and a deviation from it: 

U =  u*+su. (2.6) 
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Next the perturbation is expanded in the set of eigen-operators of the linear transfor- 
mation 

6U = pmOm. 
m 

(2.7) 

The expansion coefficients are the linear scaling fields which under the action of the 
linear transformation transform as 

w : , = p m S Y m  (2 .8)  
where ym are the corresponding scaling indices. It is clear that all the quantities 
bm, Om, y m }  are fixed-point dependent. Hence equation (2.7) leads to a fixed-point 
dependent representation of the interaction. 

2.1. m representation 

At the trivial fixed point p ?  = (1 - S ~ - ~ ) N ~ .  It is then obvious from equation (2 .3)  that 
the linear scaling fields are in this case obtained by expanding the interaction in powers 
of (+’-Nc).  Namely, in  the TFP representation we have 

(2 .9)  

(2.10) 

ymt  = d + m ( 2  - d )  (2.11) 

i.e. plt = t(Nc), pZt =$i(Nc), . . . , where from now on the dots denote differentiation 
with respect to the argument. 

2.2. SFP representation 

In the neighbourhood of the SFP instead the eigen-operators are provided by the 
powers of t%(4’). Hence we obtain the representation 

(2.12) 

with 

ymc = d - 2m. (2.13) 

The connection between the linear scaling fields bmc} and the original set of coupling 
constants is established by evaluating at Nc the successive derivatives of equation (2.12) 

(2 .14a)  

(2.14b) 

At the TFP (pmf = 0, V m )  the pmc take the values pTc= 0, p;c= - 1 / 2 i 3 N c ) ,  . . . . In 
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the TFP representation the SFP (pmc = 0, Vm) is specified by the coordinates pT: = 0, 

It is also easy to connect the two representations by giving the pt as functions of the 
j&=4i(Nc), . . . . 

CL C. 

3. Flow in interaction space 

The representations (2.9), (2.12) although obtained from a linear analysis, hold 
irrespective of the distance from a fixed point. Outside the linear region, however, the 
non-linear character of the RG transformation changes the s dependence of the 
expansion coefficients from the pure power law (2.8) to a much more complicated 
behaviour. Thus in order to construct the functions {pmt(s)}, {pmc(s)} one must solve the 
full non-linear problem related to the RG transformation. At this point it is very useful 
to introduce the concept, due to Wegner (1972), of non-linear scaling fields. 

These are parameters {g,}  which transform like 

g k  = g,sym (3.1) 

exactly. One expects that there exists a set of non-linear scaling fields for every fixed 
point and that in the neighbourhood of each fixed point these coincide with the 
corresponding linear scaling fields. More explicitly in our case one expects to find a set 
{gmc} of non-linear scaling fields for the SFP representation and a set {gmt}  for the TFP 
representation which satisfy, in the neighbourhood of the fixed points, the initial 
conditions 

( 3 . 2 ~ )  

(3.2b) 

The parametric equations {w, (s)} of the renormalization trajectories are obtained once 
the connection between linear scaling fields and non-linear scaling fields is known in any 
one of the possible representations 

p m  = p m { g i } *  (3.3) 

In fact from equation (3.1) one trivially obtains 

~ l m ( ~ ) =  p m { g i s Y i } .  (3.4) 

General procedures for the construction of the non-linear scaling fields are not known 
and the construction of the functions (3.3) in closed form is a difficult problem (Wegner 
1972, Ma 1974a). 

Nevertheless in the large-n limit it turns out to be possible to produce generating 
functions for the non-linear scaling fields. We consider the function 

with 

(3.6) 
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Using a result of Ma (1974a) one can show that this transforms according to 

G'(f') = sdG(f'/sz). (3.7) 

Therefore the non-linear scaling fields of the SFP representation are obtained as 
coefficients in the power expansion 

( 3 . 8 ~ )  

The generating function for the set {gmt} in turn is constructed from G(t) through a 
Legendre transformation. Define? 

where 

n A kd-1 d 
N ( f ) = T K d /  0 d k r + - C r ' d ' z ) - l  + f  2 -NC.  t+O 

(3.86) 

(3.9) 

One has that the function 

r(7) = G + T f  (3.10) 

transforms according to 

Y ( T ' )  = S d r ( . S 2 - d T ' ) .  (3.11) 

Hence the non-linear scaling fields are again obtained as coefficients in a power 
expansion 

with 

( 3 . 1 2 ~ )  

(3.126) 

In the following we shall mainly work in the TFP representation. In this representa- 
tion the construction of the basic set of equations (3.3) is much simpler. f (N,) ,  i(Nc), . . . 
can in fact be easily expressed in terms of the gmt by evaluating equation (3.12b) and its 
derivatives with respect to ( d 2  at q52 = N,. Thus the first two equations read: 

( 3 . 1 3 ~ )  

(3.136) 

where 

TGL 11) = Nc -NOLI t), T ( o ) = o .  

7 At the SFP all g,, = 0. Thus equation (3.86) reduces to 4 2  = N(r:) which defines the inverse function of 
t Z ( t ~ 5 ~ )  and coincides with equation (4.22) of Ma (1973). 
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After some algebra 

(3.14) 

Equations (3.13) and the similar equations for the other scaling fields give the exact 
solution of the RG equations (3.3), (3.4), whose content can now be analysed over the 
entire parameter space {pm} and not only near the relevant fixed point. 

In the next section we shall discuss their most significant features. 
In the SFP representation the equations corresponding to (3.13) are obtained by 

evaluating equation (3.86) and its derivatives at q52 = N,: 

(3.15a) 

(3.15b) 

These equations can be used to switch to the SFP representation whenever it is required. 

4. Trajectories and crossover 

In order to gain some insight into the solution let us consider a few limiting cases. The 
fixed points, the critical surface and the separatrices, namely all the elements which 
determine the structure of the flow, are characterized by special values of the non-linear 
scaling fields. Thus the coordinates of the TFP (p:: = i.~;,' = * = 0) and of the SFP 

(PUT:= 0, P;:=$t,*(N,)= 1/2N(O), . . .) are obtained from equations (3.13) by setting 
respectively gmt = 0 for all m or glt = 0, gZt = CO (i.e. all g,, = 0 in equation (3.15)). 
Similarly the condition for criticality, plt  = t(NJ = 0 (or plc = 0 in the SFP representa- 
tion), is satisfied in equation (3.13a) setting glt = 0 with all other gmt arbitrary. Since 7 
vanishes at Plt = 0, equation (3.13b) reduces to 

g2t 
1 + g2tIPE' 

P2t = (4.1) 

For d < 4, pzt(s)+ p;: as s +CO, i.e. the SFP is more stable than the TFP. 
Equation (4.1) also describes a changeover from a power law behaviour of Gaussian 

type w 2 t ( ~ ) - ~ Y 2 ~ g z t  in the neighbourhood of the m (g2t=O)r to the power law 
behaviour of the spherical type ~ ~ ~ ( s )  - syz'gzc in the neighbourhood of the SFP 
(gzt = a). This is easily checked. In fact on the critical surface pit = plc = 0, ~ 2 ,  and g2, 
are related to k2t and g2t by the simple relations: 

which follow from equation (2.146) and equations (3.136), (3.156) respectively. 

trix is characterized by all gmt = 0 except glt. Hence from equations (3.13) 
The next interesting topological objects are the separatrices. The Gaussian separa- 

P m t  = g1tSm 1 (4.2) 
namely plt(s) scales exadtly as sY1, while all other pmt vanish identically. 
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More interesting is the spherical separatrix, namely the trajectory issuing from the 
SFP. This is characterized by all g,, = Oexcept glc. From equations (3.15) it follows that 
the behaviour of Plt  and pZt along the separatrix is governed by 

g1c + 7 (P 1 t) = 0 (4.3a) 
PZt = 1/2NPlt). (4.3b) 

In the neighbourhood of the SFP, 7(plt) is linear in Plt  as it follows from equation 
(3.14) 

d - 2  N, Plt 

2P 2t 
r ( P 1 t I - z  -pit = -7. (4.4) 

This gives plt(s) = 2p?tCplc(s)= 2~~tCglcsy1c, however the non-linear terms in 7(klt) 
change this behaviour, until in the asymptotic region glc>> 1, 7(plt)-cL!?2)-1 and the 
changeover to the Gaussian power law s ’It  occurs. Similarly equation (4.3b) shows that 
pzt -* pTtC as ,ult + 0, whereas it switches to the Gaussian power law behaviour pzt(s) - 
sY2t as pl, + CO. 

In general in equations (3.13) appear all the non-linear scaling fields gmt. In the 
range of dimensionality 3 < d < 4 the relevant fields are glt, gZt. The simplest approxi- 
mation containing crossover is obtained by keeping these two fields and discarding all 
others. The resulting equations are 

Plt =glt+27(Plt)gZt (452)  

(4.5b) 

If 7(plt) was linear in plt these equations would be analogous to the RW model 
equations with special values of the critical indices ylt, yZt, ylc, y z c  appropriate to the 
trivial and the spherical fixed point. On the other hand, 7(plt)  is a very involved 
function of plt and the dimensionality d, which, as already stressed in equation (4.4), 
vanishes linearly with Fit. Hence the Riedel and Wegner (1974) theory is here 
contained as a lowest-order approximation in pit, i.e. in the neighbourhood of the 
critical surface, where our equations reduce to the RW equations: 

It can be shown easily? that the same result can be obtained retaining the dominant term 
in E = 4-d. The flow generated by equations (4.5) for d = 3$ and d = 3.5 is displayed 
in figures 1 and 2 and compared with the RW flow generated by equations (4.6). Away 
from the critical surface the results coincide only on the separatrix emerging from the 
TFP, where plt scale exactly in both cases. The deviations become larger as we move 
towards the spherical separatrix where the RW results coincide with the present one only 
at the SFP. As we have already stressed, Plt and wZt do not simply scale on this 
separatrix and a changeover takes place from spherical to Gaussian behaviour. In the 
RW case instead (vertical line, at pz = 1 in figures 1 and 2) pzt is identically equal to p;; 
and p1 scales exactly as s ’ l c .  A comparison between figures 1 and 2 shows that, 
according to the previous analysis, differences are smaller as d increases towards d = 4. 

t To this purpose it is useful to express T ( ~ , J  in terms of the function 9 defined by the equation (5.24) of Ma 
(1974b). 
t At d = 3 the effect of the marginal field g3t is disregarded for simplicity. 
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Figure 1. Flow diagram ford = 3. The full curves represent the renormalization trajectories 
in the full non-linear calculation. The broken curves are the renormalization trajectories in 
the RW approximation. The separatrices are the lines emanating from the point w 2  = 1. 
~ ( i = ~ ( i t l ~ ~ ~  C L Z = W ~ ~ / C ( E .  

f i 2  

Figure 2. Flow diagram for d = 3.5. The full curves are the renormalization trajectories in 
the full non-linear calculation. The broken curves represent the renormalization trajec- 
tories in the RW approximation. The separatrices are the lines emanating from the point 
c ~ 2 = 1 .  ~ ( i = ~ i t l A ~ >  C L ~ = C L ~ ~ I ~ L E .  
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In figure 3 the same flow lines for d = 3 according to equations (4.5) are displayed in 
terms of reduced variables, which allow for a more compact graphical representation 
and make clear the globality of the solution here considered. 

Once the flow trajectories are known the crossover effects can be evaluated over the 
entire { ~ ( ( s ) }  space. As an illustration we display in figure 4 the susceptibility crossover 

Figure 3. Flow diagram for d = 3 in the reduced coordinates reference frame. 

Figure 4. The effective exponent yerr for the Gaussian-spherical crossover. The full curves 
are the results of the full non-linear calculation. The broken curve represents yerr in the RW 
approximation. 
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along the p2t =constant paths. The effective exponent 

8 In XOLlt, P2t) 
Yeff = - a In Plt F2* 

(4.7) 

is computed extending the Riedel and Wegner (1974) inversion method to the present 
case. For convenience this is presented in the appendix. As expected the effective 
exponent computed from the full non-linear solution behaves in the same way as the 
exponent computed in the RW approximation for p l ,  p2 small. On the other hand for 
p2 -p;' and p1 - 0 ( 1 )  there is a small quantitative difference in the crossover region 
due to the different structure of the flow diagram. 

Appendix 

Starting from the generalized scaling relation 

x01.1, p2)=s2xOL1(s), cL2(sN (A. 1) 

Fl(s*) = 1 (A.2) 

cL2(s*) = f i 2  (A.3) 

where pl = pl t /A2  and p2 = p~~/p?;, define s* and f i2  by 

and assume that the line p1 = 1 lies outside the critical region. Then setting s = s* in 
equation (A. 1): 

X(P1, F2) = s*22(fi2) 04-41 
where 2(fi2)=x(1, f i 2 )  is the non-critical susceptibility. This can be computed by 
standard methods, while the critical behaviour has been segregated in i. Computing i 
from equation (4.5~) we obtain 

c = -a(g2/g?) 

a = 27(1), 4t = Y 2 t / Y l t  

and f is the solution of 

f = (1 +cf)". (A.9) 
The dependence of g1 and c on pl, p2 is obtained inverting equations (4.5a), (4%). 
Note that in terms of g,, g2 equation (A.5) is in the scaling homogeneous form. This 
form is useful in order to analyse tricritical scaling and tricritical crossover. 

In the region around the TFP the renormalization group invariant c takes all values 
from 0 to 00 and it is precisely for c + 00 that the scaling function produces crossover 
from tricritical to ordinary critical behaviour. 

First notice that sufficiently close to the TFP gl - p l ,  g2 - p2. Hence equation (AS) 
can be rewritten in the form 

xb1, P2)=p;Y'(f(4t, c))2"2%2) (A.lO) 
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with 

c = -a ( P ~ P ? ) .  

Next, from equation (A.9) one has 

Hence, in the asymptotic tricritical region (c << 1) 

X b l r  P2)-P;yt 

(A. 11) 

(A.12) 

(A. 13) 

while in the asymptotic critical region (c >> 1) one has the double scaling form 

with 

2 
yc=- d -2' 
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